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Noisy FitzHugh-Nagumo model: From single elements to globally coupled networks
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We study the noisy FitzHugh-Nagumo model, representative of the dynamics of excitable neural elements,
and derive a Fokker-Planck equation for both a single element and for a network of globally coupled elements.
We introduce an efficient way to numerically solve this Fokker-Planck equation, especially for large noise
levels. We show that, contrary to the single element, the network can undergo a Hopf bifurcation as the
coupling strength is increased. Furthermore, we show that an external sinusoidal driving force leads to a
classical resonance when its frequency matches the underlying system frequency. This resonance is also
investigated analytically by exploiting the different time scales in the problem.
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I. INTRODUCTION

The response of dynamical systems to noise has long b
an active field of study, mostly driven by its enormous r
evance in numerous applications in engineering, physics
ology, and medicine. In this context, noisy dynamical s
tems also present the researcher with interesting physica
mathematical problems which have led to the developm
of a number of analytical and numerical techniques. Oft
noise is an undesirable element of the dynamical system
considerable previous work has focused on techniques
can suppress its effects in real applications. However, no
noise is bad; indeed, sometimes the system ‘‘tunes’’ itsel
achieve optimal response as a function of a given noise fl
This has led to extensive investigations of noise-media
cooperative behavior, e.g., stochastic resonance@1#, and
noise-enhanced propagation@2#, as well as more rigorous
investigations into the behavior of bifurcating dynamical s
tems in the presence of noise@3#; in essence one develops
strategy that, instead of minimizing the noise, searches
the area in the system parameter space wherein the op
response in the presence of a given noise floor is obtai
This is particularly relevant in the context of neural dyna
ics, it being generally accepted that neurons adjust their
namical parameters~e.g., firing thresholds! to achieve opti-
mal information throughput, in the presence of noise@4#; as
suggested here, the response to more complex signals
be characterized by measures that are somewhat more
eral than simply an output signal-to-noise ratio. An ad
tional improvement in the response can often be obtai
when the number of elements is increased. This, then, le
to a study of noisy nonlinear dynamics in coupled syste
and a wide variety of coupling schemes have been stu
@5#. A systematic investigation of networks, however, can
computationally costly since it requires solving numero
coupled stochastic differential equations.

In this paper, we investigate the effect of noise in t
FitzHugh-Nagumo model~FHN! @6,7# which has become a
popular representation of dynamical systems for several
sons. First, its relative simple structure sometimes allows
to make analytical progress. Second, by varying the par
eters, the FHN admits a number of standard dynamics
1063-651X/2004/69~2!/026202~9!/$22.50 69 0262
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cluding periodic oscillations, stable fixed points, and exc
ability. Third, the FHN has been used as a simple model
both neurons@8# and cardiac tissue@9#, making it relevant to
biomedical systems.

Our main approach consists of the recasting of the no
FHN equations into the Fokker-Planck equation~FPE!. We
will do this for both the single element and for a system
globally coupled elements. In the latter case, the FPE
proach allows us to investigate the coupled system in a c
putationally efficient fashion. In addition, we will include
probe signal, taken to be a time-sinusoidal driving term. P
ticular attention is paid to thedeterministicresonance effects
that can arise when a system with an underlying frequenc
subject to this probe signal@10#. In recent work@11#, we
have studied such resonance behavior for a noisy t
dimensional~2D! system~the two-junction superconductin
quantum interference device or dc SQUID!, which follows
somewhat different dynamics~the bifurcation phenomena ar
different! than the FHN model considered in this work; o
results have shown that frequency information about an
ternal ‘‘target’’ signal may be extracted by sweeping the s
tem control parameters until the characteristic~internal! fre-
quency matches the external signal frequency, a di
exploitation of the deterministic resonance behavior t
such systems demonstrate, even in the presence of a n
floor.

The paper is organized as follows: in the following se
tion, we introduce our model and derive the FPE. We th
examine our results for a single element and discuss t
connection with recently published work. In Sec. III w
study a network of globally coupled FHN elements with, a
without, a probe signal. Finally, we conclude with a discu
sion of our results.

II. SINGLE ELEMENT

The FHN is a simplified version of the well-know
Hodgkin-Huxley model @12#, which describes the firing
mechanism in an excitable nerve cell. In the FHN, the d
namics of the nerve cell are reduced to two variables: a
activation variable, corresponding to the voltage, and a s
recovery variable@13#. This reduction allows one to visualiz
©2004 The American Physical Society02-1
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the dynamics by drawing the nullclines~the lines corre-
sponding to the steady states of the two variables! in phase
space. As mentioned before, the FHN displays a rich ph
diagram that includes excitable, oscillatory, and bistable
gimes, rendering it suitable for use a model system in
field of pattern formation~see, e.g., Ref.@14#!. The inclusion
of noise has been investigated for both single FHN eleme
~see, e.g., Refs.@15,16#! and populations of coupled FHN
elements~see, e.g., Ref.@18#!. In addition, the periodically
driven FHN, where either the slow or the fast equation c
tains a time-periodic driving term, has received considera
attention@19#.

Let us start with the most general form of the FHN sy
tem:

dx

dt
5Ax31Bx21Cx1Hy1I 1j,

dy

dt
5Ex1Fy1G. ~1!

Here,x(t) is the voltage variable,y(t) is the recovery vari-
able, andI represents an external stimulus. Furthermore,j is
a Gaussian noise source having zero mean, and correl
function ^j(t)j(t8)&52Dd(t2t8) andA throughG are pa-
rameters that govern the dynamics of the system. To m
the treatment in this paper as general as possible, all rele
analytical expressions will be derived using the above se
equations. However, when presenting results of numer
calculations, we have chosen to limit ourselves to the inv
tigation of the FHN in one of its more conventional repr
sentations

dx

dt
5

x~x2a!~12x!2y

a
1j,

dy

dt
5x2py2b. ~2!

where a, a parameter measuring the separation of ti
scales, is typically taken to be small. Conversion betw
Eqs.~1! and ~2! is straightforward.

A. The single-element Fokker-Planck equation„FPE…

As promised above, we will study the noisy FHN mod
via the FPE approach. This approach is motivated by the
that for parameters values for which analytical progress
difficult to achieve one has to resort to numerics. In this ca
direct simulation of the Langevin equations~1!, as has been
commonly done in the FHN repertoire, can be computati
ally intensive: for reasonably accurate results one typic
has to average over many runs, particularly for systems c
to a bifurcation point where one must distinguish betwe
different stable solutions, and for large-noise scenarios.
merical solutions of the FPE, on the other hand, can be
tained much faster.

The FPE for the single-element FHN is readily writte
down using standard methods@20#
02620
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]t
5D

]2r

]x22
]

]x
@~Ax31Bx21Cx1Hy1I !r#

2
]

]y
@~Ex1Fy1G!r#, ~3!

wherer(x,y) is the probability density function. As usua
the FPE has to be accompanied by initial and boundary d
~decay to zero asx→6`,y→6`, with sufficiently high
rate!, and the normalization condition

E
2`

1`E
2`

1`

dxdyr~x,y,t !51. ~4!

It turns out that our FPE has a unique stationary soluti
which can be seen by observing that there exists a Lyapu
function~see Ref.@20# and references therein!. The existence
of the Lyapunov function guarantees that the stationary
lution is unique and globally stable.

To ensure numerical efficiency we have chosen not
solve the FPE via a finite difference@21# or finite element
scheme@22#. Rather, we have used a spectral method
which we expand the probability densityr using a basis of
Hermite polynomials@23#:

r~x,y,t !5 (
n50

`

(
m50

`

r n
m~ t !Hn~x!Hm~y!e2x2

e2y2
. ~5!

Note that this expansion satisfies the boundary conditio
and the normalization condition withr 0

051/p. After insert-
ing Eq. ~5! into the FPE~3! we obtain the following hierar-
chy of coupled ordinary differential equations forr n

m(t):

ṙ n
m5~ 3

2 An21Cn1Fm!r n
m1@B~n21!1I #r n21

m

1@D1 3
4 A~n21!1 1

2 C#r n22
m 1

B

4
r n23

m 1
A

8
r n24

m

1Bn~n11!r n11
m 1An~n11!~n12!r n12

m 1Grn
m21

1
F

2
r n

m221 1
2 ~H1E!r n21

m211E~n11!r n11
m21

1H~m11!r n21
m11 ,

where n50,1 . . . ,̀ ,m50,1, . . . ,̀ , ~6!

with x̄ and ȳ

x̄5E
2`

1`E
2`

1`

dxdyxr~x,y,t !5pr 1
0 , ~7!

ȳ5E
2`

1`E
2`

1`

dxdyyr~x,y,t !5pr 0
1 . ~8!

This infinite hierarchy is then truncated atn5N and m
5M , settingr N11

M1150.
Our numerical scheme is particularly efficient for larg

noise levels, where a small number of coefficients is alre
2-2
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sufficient to give excellent numerical answers. This can
seen in Fig. 1, where we plot the first momentx̄ as a function
of time, obtained numerically by solving the Langevin equ
tions ~1! and averaging over a large number of realizatio
and by solving the FPE using the above-described spe
method. The spectral method~with N5M57 coefficients! is
seen to provide excellent agreement with the more conv
tional and time-consuming technique based on numeric
integrating the coupled stochastic differential equations~1!.

Once a suitable algorithm is implemented to solve
FPE it is straightforward to find the probability density fun
tion corresponding to its unique stationary solution@22#. In
Fig. 2 we have plotted the marginal densityrx(x)
5*2`

1`dyr(x,y) for two different noise levels calculated usin
the FPE~solid lines! and via Langevin simulations~dashed
lines!. Again, the agreement between the Langevin simu

FIG. 1. Comparison between the numerical solution of
Langevin equations~2! ~averaged over 500 realizations! and the
solution of the Fokker-Planck equation by the spectral method w
N5M57 coefficients. Parameters areD58, b50.5, p51,
a50.05,a50.5, for which the deterministic system is oscillator

FIG. 2. Marginal density*2`
1`dyr(x,y) obtained through the

numerical solution of the Langevin equations~2! ~averaged over
500 realizations! and the solution of the Fokker-Planck equation
the spectral method withN5M57 coefficients whenD58, and
N5M530 coefficients whenD50.8. Parameters areb50.2, p
51, a50.05, anda50.5, for which the deterministic system
excitatory.
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tions and the numerical solutions of the FPE using our al
rithm is excellent. For the smaller noise level,rx(x) becomes
more peaked around the fixed point and more coefficie
need to be taken into account:N5M530 vsN5M57 for
the higher noise level.

B. ‘‘Stochastic bifurcation:’’ A brief digression

Contrary to deterministic systems, the definition of a
furcation in stochastic systems is not very precise. One p
viously employed way of defining phenomenological s
chastic bifurcations is to focus on a qualitative change i
time-averaged quantity@3#. Examples of this can be a prob
ability density function or powerspectrum, which undergo
a qualitative change from single peaked to double pea
@24#.

Recently, several studies have attempted to address
issue of stochastic bifurcations in the FHN@16#. Tanabe and
Pakdaman extended and refined the treatment by Rodrig
and Tuckwell and found expressions for the mean, varian
and covariance of the dynamical state variables in the F
@17#. These expressions were derived by assuming the di
bution of the variables to be Gaussian. Tanabe and Pakda
first demonstrated that, using Langevin simulations of
full dynamics, the steady state distributions of the variab
could undergo a qualitative transition from unimodal, f
small values of the noise intensity, to bimodal for larger v
ues of the noise. They used the equations for the momen
obtain a bifurcation diagram in noise vs system parame
space. They found that the first moment of the fast varia
undergoes a Hopf bifurcation at a critical value of the curr
intensity I which approached the critical value for the dete
ministic Hopf bifurcation as the noise level was decreas
They then concluded that one could define a stochastic b
cation in the FHN that was an extension of the determinis
one.

It is important to note that the occurrence of a seco
peak in the probability distribution corresponds to the oc
sional escape of an element from its fixed point. Upon
creasing the strength of the noise, the probability of esc
becomes larger and such a peak becomes more pronou
However, even for very small noise levels, the state point
a nonzero probability to escape from the fixed point, lead
to a small but nonzero second peak in the probability dis
bution. Thus, defining a stochastic bifurcation based on
occurrence of a second peak is problematic.

In addition, caution needs to be exercised when link
the ‘‘bifurcation’’ in the moment equations to a stochas
bifurcation. As we have mentioned before, the FPE is lin
and has unique, stationary, and globally stable solutio
Consequently, the moments of the FHN cannot exhibi
Hopf bifurcation. The Hopf bifurcation found in Ref.@17# is,
most likely, an artifact of the limited number of momen
considered; one would expect that increasing the numbe
moments, an admittedly very difficult and cumbersome ta
will lead to the disappearance of the Hopf bifurcation.

From the above, we conclude that we cannot provid
meaningful definition of a stochastic bifurcation in a sing
FHN element. However, as we will see below, the globa

e

h
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FIG. 3. Power spectrum of the variabley for three different values of the probe signal, and noise strength;~a! D51.2, and~b! D52.
Simulations done by using the Langevin equations. Other parameters areb050.5, p51, q50.01, a50.05, anda50.5
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coupled casedoesexhibit a true stochastic Hopf bifurcation
related to the synchronization of the network. Also, as
will discuss in the following section, even without determi
ing the location of a stochastic bifurcation, we can still fi
the underlying ~or characteristic! frequency of the noisy
single FHN element.

C. Inclusion of a probe signal

We now turn to the inclusion of a probe signal by cons
ering a sinusoidal external component in Eqs.~1! and~2! via
G5G01qsin(vpt) and b5b01qsin(vpt), respectively. The
motivation stems from the desire, in many systems it is
sirable to obtain the internal~or natural! frequency of the
system. Our recent work@11# has already demonstrated th
utility of determining this frequency~in terms of laboratory-
controllable system parameters!, as a means towards optim
performance~in the presence of a noise floor!, as well as
detection of an unknown ‘‘target’’ signal containing fre
quency information. The ‘‘resonance’’ in the output signa
to-noise ratio, exhibits some hallmarks of the well-stud
stochastic resonance effect@1#, however, since it occurs at
deterministicvalue of a system control parameter, precis
at the matching of the probe frequency with the~determinis-
tic! internal oscillation frequency past the onset of a sadd
node bifurcation.

One way of determining this internal frequency is to co
pute x̄(t) or ȳ(t) from the Langevin equations as time
dependent quantities; unfortunately, this is computation
very costly. On the other hand, aside from transients,x̄ or ȳ
calculated from the FPE~which offers a computationally su
perior way to characterize the system!, do not display a time-
dependent behavior for a single FHN oscillator. Hence,
turn to the time-sinusoidal ‘‘probe’’ signal and the determ
istic resonance that it sets up, to determine the internal
quency.

To illustrate the effect of the probe signal, we first pe
formed Langevin simulations and calculatedȳ. In Fig. 3 we
plot the power spectrum of this quantity for three differe
probe signals; two of them with frequenciesvp that differ
significantly from, and one that is very close to the under
ing frequency. The power spectrum was obtained by ave
02620
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ing 100 time series of 223 time steps each. The figure illus
trates clearly that, for a probe signal frequency that matc
the broad peak corresponding to the~in general, nonsinusoi-
dal! internal oscillations in the power spectrum of the u
probed system, the signal is amplified. Thus, adding
probe signal gives us a tool to investigate the dynamics
the noisy system and, specifically, to determine the intrin
frequency of the system.

Even though it is in general much faster than direc
simulating the driven Langevin equations, solving the tim
dependent FPE can still be time consuming. Fortunately,
can reduce the time-dependent problem to a stationary o
we consider a small amplitude signal,q5«Q, where«!1.
In this case, Eq.~3! contains terms with two different time
scales thereby rendering the resulting FPE can be suscep
to analysis via the method of multiple scales; in turn w
expect to be able to capture the long-time behavior of
probability densityr.

The analysis begins by introducing fast and slow tim
scales as follows:

t5
t

«
, t5t. ~9!

We look for a distribution function satisfying the bounda
condition according to the ansatz:

r~x,y,t;«!5 (
n50

2

r (n)~x,y,t,t!«n1O~«3!. ~10!

From Eq.~10!, the average ofx is given by

^x&5^x& (0)1«^x& (1)1O~«2!, ~11!

where

^x& ( j )5E
2`

1`E
2`

1`

dxdyxr ( j )~x,y,t !. ~12!
2-4
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The average ofy is given by similar equations. Inserting E
~10! into Eq. ~3!, we obtain the following hierarchy of equa
tions for r ( j ):

]r (0)

]t
50, ~13!

]r (1)

]t
5D

]2r (0)

]x2
2

]

]x
@~Ax31Bx21Cx1Hy1I !r (0)#

2
]

]y
@~Ex1Fy1G0!r (0)#2

]r (0)

]t
, ~14!

]r (2)

]t
5D

]2r (1)

]x2
2

]

]x
@~Ax31Bx21Cx1Hy1I !r (1)#

2
]

]y
@~Ex1Fy1G0!r (1)#2

]r (1)

]t

2Q sin~vpt !
]r (0)

]y
, ~15!

where the normalization condition

E
2`

1`E
2`

1`

r (n)~x,y,t !dxdy5d0n ~16!

follows from Eq.~4!. Equation~13! implies thatr (0) is inde-
pendent oft. Then, the terms in the right side of Eq.~14!
which do not havet-dependent coefficients give rise to sec
lar terms~unbounded on thet-time scale!. The condition that
no secular terms should appear is

D
]2r (0)

]x2
2

]

]x
@~Ax31Bx21Cx1Hy1I !r (0)#

2
]

]y
@~Ex1Fy1G0!r (0)#2

]r (0)

]t
50. ~17!

This equation should be solved forr (0) together with the
normalization condition and the initial condition data. This
most easily done in Fourier space, in which the above eq
tion reads

ivr̂ (0)5D
]2r̂ (0)

]x2
2

]

]x
@~Ax31Bx21Cx1Hy1I !r̂ (0)#

2
]

]y
@~Ex1Fy1G0!r̂ (0)#. ~18!

Note that this problem is equivalent to solving the FPE~3!
without the probe signal as the effects of the probe sig
appear first when calculating the first-order correction,r (1).

To calculate these first-order corrections, we again imp
the condition that no secular terms appear, and that the ri
hand side of Eq.~15! vanishes. The resulting equation is
02620
-
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D
]2r (1)

]x2
2

]

]x
@~Ax31Bx21Cx1Hy1I !r (1)#2

]

]y

3@~Ex1Fy1G0!r (1)#2
]r (1)

]t
2Q sin~vpt !

]r (0)

]y
50.

~19!

In Fourier space we obtain,

ivr̂ (1)5D
]2r̂ (1)

]x2
2

]

]x
@~Ax31Bx21Cx1Hy1I !r̂ (1)#

2
]

]y
@~Ex1Fy1G0!r̂ (1)#2 i

Q

2

]

]y

3@ r̂ (0)~v1vp!2 r̂ (0)~v2vp!#, ~20!

where

r̂ ( j )~x,y,v!5E
2`

`

dte2 ivtr ( j )~x,y,t !, ~21!

^ x̂& ( j )5E
2`

1`E
2`

1`

dxdyxr̂ ( j )~x,y,t !, ~22!

j 50,1. ~23!

Equation ~20! should be solved forr̂ (1) together with
*2`

1`*2`
1`dxdyr̂ (1)50. Sincer (0) evolves to a stationary so

lution for long time@i.e., r̂ (0)5d(v) f (d1 ,d2)], we find that
r̂ (1)50 is the only solution of Eq.~20!, unlessv56vp .
Then Eqs.~20! and ~23! imply that

r̂ (1)5h1~x,y!d~v2vp!1h2~x,y!d~v1vp!. ~24!

Inserting Eq.~24! in Eq. ~20!, we obtain two uncoupled
equations forh1 andh2. These can be solved, by expan
ing h6 in Hermite polynomials,

h6~x,y!5 (
n50

`

(
m50

`

~T6!n
mHn~x!Hm~y!e2x2

e2y2
, ~25!

and solving the corresponding nonlinear systems of eq
tions for the coefficients (T6)n

m . Once we obtain (T6)n
m , we

can calculatê x̂& (1) from Eq. ~23!. Note thatr̂(1vp)5 r̂*
(2vp), by taking the complex conjugate in Eqs.~20! and
~23!. Then it follows from Eqs.~24! and ~25! that (T1)n

m

5„(T2)2n
2m

…* . Therefore we conclude that̂x̂& (1)(2vp)
5@^x̂& (1)#* (1vp), and the inverse Fourier transform yield

^x& (1)~ t !52 Re„^ x̂& (1)~vp!…cos~vpt !

22 Im„^x̂& (1)~vp!…sin~vpt !. ~26!

Knowing ^x& (1)(t), the amplitude can be readily compute

A^x&52A^x̂& (1)~^x̂& (1)!* 1O~«2!. ~27!
2-5
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The advantage of the above procedure is that it only
quires solving stationary equations. Rather than having
calculate a fully time-dependent solution and waiting un
transients have disappeared, the amplitude of the oscillat
can be found by solving the stationary problem Eq.~18! for
r̂ (0), followed by solving a stationary problem forr̂ (1). To
verify that the expansion in« can be safely truncated at firs
order, we have plotted in Fig. 4 the amplitude ofx̄ using the
full FPE equation~3! ~solid circles! and using the theoretica
approximation~27! ~solid line!. The agreement is remark
able, although it should be noted that the amplitude of
probe signal considered here is small (q50.01).

For increasing strength of the probing amplitude, high
orders in the expansion may be required. However, oncer (1)

is known, it is also straightforward to find the success
terms in the expansion. Without entering into a detai
study, some general features can easily be drawn from
hierarchy of equations forr ( j ). Similarly to the analysis for
r̂ (1), and by taking into account thatr̂ (1) is a function exclu-
sively of v6vp , it is straightforward to prove thatr̂ (2)50
is the only solution, unlessv50,62vp . In general, succes
sive terms will depend on higher harmonics of the main f
quencyvp .

FIG. 4. Comparison between the theoretical results and the
merical simulations, marked by symbols. Parameters areD520,
b050.3, p51, q50.01, a50.05, anda50.5.
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In Figs. 5~a! and 5~b! we apply the theory to paramete
sets for which the deterministic system is excitatory~i.e.,
exhibits a stable fixed point!, respectively, oscillatory. In
both cases, as the figures demonstrate, decreasing the
level leads to the appearance of a clear maximum for a n
zero value ofvp . For the parameters of Fig. 5~b! this is not
surprising, since for zero noise levels the system is osc
tory ~with A^x&51.03 andv50.24!. For the excitatory case
@Fig. 5~a!# and in the absence of a probe signal, nonz
noise levels can lead to occasional escapes from the fi
point, leading to an underlying frequency. The inclusion
the probe signal will then result in a classical resonan
when the probe signal frequency matches this underly
frequency@10,11#.

Using the expression forA^x& we can determine the loca
tion of the maximum. In Fig. 6, we plot the maximum i
A^x& , which corresponds to the underlying frequency, a
function of the noise strengthD, for different numbers of
coefficients. As expected, for small values of noise the nu
ber of coefficients should be increased to achieve higher
curacy. Note that there exists a critical value of the no
below which the underlying frequency is different from zer

u-
FIG. 6. Maximum of A^x& vs the noise strengthD for three

different number of coefficients. The results are obtained using
~27! with parameters set as in Fig. 5, withb050.5.
de was
is
FIG. 5. Amplitude ofx̄ as a function of the frequency of the probe signal for different values of the noise strength. The amplitu
calculated using Eq.~27!. The parameters arep51, q50.01, a50.05, anda50.5. b0 was chosen such that the noiseless system
excitatory in~a!, whereb050.2, and oscillatory in~b!, whereb050.5 and where the noiseless system has a frequency ofv;4.1.
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This is in full agreement with results plotted in Fig. 3 v
Langevin simulations. In addition, notice that the depe
dence of the underlying frequency is well described by
square-root dependence on the noise strength, a familia
sult for supercritical bifurcations.

III. GLOBALLY COUPLED SYSTEM

A. The FPE

We now extend the model equations~1! to include a glo-
bal coupling term; this coupling scheme is the most am
nable to theoretical treatment. The resulting Langevin eq
tions are

dxi

dt
5Axi

31Bxi
21Cxi1Hyi1I 1

K

N (
j 51

N

~xj2xi !1j i ,

~28!

dyi

dt
5Exi1Fyi1G, i 51, . . . ,N. ~29!

Note that for a perfectly synchronized system this form
coupling reduces to the previously discussed single-elem
equation.

We are interested in an analytical investigation of the
namics for very largeN. In the thermodynamic limit,N
→`, it is well known@25# that models with mean-field cou
pling are described by an evolution equation for the o
particle probability density. This can be seen by noting t
the hierarchy of equations for all the multiparticle probabil
densities can be closed by assuming molecular chaos, w
states that there are no correlations among the oscilla
Hence, the one-system probability densityr(x,y,t) is as-
ymptotically ~i.e., in the limit, N→`) the solution of the
following nonlinear Fokker-Planck equation:

]r

]t
5D

]2r

]x22
]

]x
@~Ax31Bx21Cx1Hy1K~ x̄2x!1I !r#

2
]

]y
@~Ex1Fy1G!r#, ~30!

where

x̄5E
2`

1`E
2`

1`

dx dy xr~x,y,t !. ~31!

Analogous to the case of the single element, we will so
the FPE using an expansion in Hermite polynomials. T
hierarchy~6! now becomes a system of coupled first-ord
nonlinear differential equations
02620
-
a
re-

-
a-

f
nt
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-
t

ich
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e
e
r

ṙ n
m5S 3

2
An21Cn1Fm2KnD r n

m1@B~n21!1I

1pKr 1
0#r n21

m 1FD1
3

4
A~n21!1 1

2 C2
K

2 G r n22
m

1
B

4
r n23

m 1
A

8
r n24

m 1Bn~n11!r n11
m

1An~n11!~n12!r n12
m 1Grn

m211
F

2
r n

m22

1
1

2
~H1E!r n21

m211E~n11!r n11
m211H~m11!r n21

m11 ,

where n50, . . . ,̀ ,m50, . . . ,̀ , ~32!

Again, to compare our FPE to direct numerical simulatio
we will truncate the above infinite hierarchy. A comparis
between this truncation and the solution of the Lange
equations for a large number of FHN oscillators~5000! is
shown in Fig. 7. The solution of the FPE, corresponding
N→`, provides excellent agreement with the finiteN case
and shows that 5000 is already close to infinity for all pra
tical purposes. As an aside, we mention here that for
coupled system the advantage of using the FPE beco
very clear. The numerical computation of the FPE was
proximately 80 times faster than the direct Langevin cal
lation.

B. Bifurcation for the coupled system

The above example illustrates that, in contrast to
single-element case, where the FPE has a unique statio
solution, the FPE for the coupled system can exhibit tim
dependent solutions. In fact, by varying the parameters,
system can undergo a stochastic Hopf bifurcation. This
shown in Fig. 8 for two different values of the couplin
strength. In Fig. 9~a! we have plotted the amplitude ofx̄ as a
function of the coupling strengthK for a fixed level of noise,

FIG. 7. Comparison between solution obtained by means
FPE, and direct numerical simulation of the Langevin equations
5000 oscillators. Parameters areb50.5, p51, a50.05, a50.5,
D54, andK510.
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and for two different values ofb. For these values ofb, the
deterministic system is synchronized and oscillatory. Bel
some critical coupling strength, the noise destroys the s
chronization andx̄ is no longer oscillatory. Consequently, th
solution of the FPE is stationary. Upon increasing the c
pling strength past this critical value, the system synch
nizes and exhibits a time-dependent behavior. As in Fig
the bifurcation is well described by a square-root depende
on the order parameter. The Hopf bifurcation is further illu
trated in Fig. 9~b!, where we have plotted the amplitude ofx̄
as a function of the noise strength for a fixed coupli
strength. Again, the system displays a Hopf bifurcat
which correspond to a transition from unsynchronized
synchronized dynamics: below the critical noise level,
solution is time dependent and the elements are synchron
while above the critical noise level, the solution is stationa
and the elements are unsynchronized.

The behavior of the noisy globally coupled system
more complicated for parameter values for which the de
ministic system is excitatory. Possible dynamics inclu
noise-induced synchronization@26# and system size coher
ence resonance@27,18#. A systematic investigation of this
regime will be the topic of a future publication.

FIG. 8. The amplitude ofx̄ as a function of time for two differ-
ent values of the coupling showing a clear bifurcation. Other
rameters are as in Fig. 7.
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The inclusion of a probe signal will elicit a time
dependent solution of the FPE, even when the systemwith-
out the probe signal has a stationary solution. As in t
single-element case, the amplitudex̄ of the response depend
critically on the frequency of the probe signal as is shown
Fig. 10. ForK50 the response curve does not exhibit a pe
showing that there is no underlying frequency in the pro
lem. IncreasingK produces an underlying frequency whic
appears as a peak in the curve. Note that forK.2.9 the
system will synchronize in the absence of a probe sig
~peak atvp50). This, then, leads to a response that has t
principal frequencies: the frequency arising from the Ho
bifurcation and the probe frequency. Note also that in c
trast to similar coupled systems~see, e.g., Ref.@11#!, increas-
ing the coupling does not lead to the ‘‘death’’ of the oscill
tory region.

IV. CONCLUSIONS

In this paper, we have investigated the noisy single a
globally coupled FHN model subject to an external tim
sinusoidal injection~or ‘‘probe’’ ! signal. We have derived a
FPE for the system and shown that we can solve this F

-
FIG. 10. Amplitude ofx̄ vs the frequency of the probe signal fo

three different values of the coupling strength. Parameters are
Fig. 7.
FIG. 9. ~a! Amplitude of x̄ as a function of the coupling strength for a fixed level of noise and two different values ofb. ~b! Amplitude
of x̄ as a function of noise, kept fixedK55. Other parameters are as in Fig. 7.
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efficiently by using a suitably chosen expansion. We find t
there is a classical~or deterministic! resonance effect whe
the frequency of the probe signal approaches the underl
system frequency. We were able to characterize this re
nance by separating the fast and slow time scales in the p
lem and find that, for small driving amplitudes, the agre
ment between numerical and analytical results is excell
Our work was motivated by our earlier investigations@11#
into the saddle-node bifurcation that underpins the dynam
of a dc SQUID; in that work, we showed that the syste
performed optimally~in the presence of a noise floor! when
it was tuned so that the frequency of an external ‘‘targ
signal ~that was the subject of our detection procedure! was
coincident with the internal frequency; ana priori knowl-
edge of the internal frequency, in terms of deterministic s
tem control parameters could then permit us to determine
target frequency by adjusting the SQUID parameters u
the resonance depicted in Figs. 5 or 10, was realized. T
are important differences in the dynamics, of course:
FHN system undergoes a Hopf bifurcation, and the natu
frequency does not decrease with the number of coupled
ements. A side product of our current work, is the charac
da
.
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ization of the bifurcation behavior in the coupled system,
the presence of noise, without the necessity of truncatin
moment system derived from the Langevin dynamics;
have shown that such a truncation can lead to mislead
results.

Future work will include the further investigation of th
response of the globally coupled system to the probe sig
In particular, parameter values for which the determinis
system is excitatory will be explored. Also, attention will b
paid to the possibility that, upon inclusion of an input sign
a population can become synchronized and can produ
large output signal. By varying the intrinsic parameters,
cluding the coupling constant, the response can thus
‘‘tuned’’ at different frequencies.
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